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Abstract—Quadrotor manipulation through cluttered environ-
ments requires efficient evaluation of safe regions and reliable
control. This paper presents our methods for combining sample
based planning methods with trajectory optimization to find the
optimal trajectory for a quadrotor through an obstacle field. We
used RRT* to find a path between a start and end point given the
preset obstacles. The path was then used as an initial guess in a
direct collocation trajectory optimization in Drake with collision
avoidance constraints to find the optimal trajectory through
space. The dynamics were stabilized by a time-varying finite
horizon linear quadratic regulator. The optimization problem
successfully avoids spherical and rectangular obstacles in space
and is stabilized by finite-horizon LQR in response to random
perturbations.

I. INTRODUCTION

Reliable navigation of unmanned aerial vehicles (UAVs) is
integral to the further development of the aerospace industry.
As the demand for quadrotors and UAVS usage in highly dense
environments increases, such as in disaster response scenarios
or autonomous package delivery, efficient path planning and
collision avoidance becomes incredibly important. However,
the effectiveness of these systems relies on utilizing optimal
and collision-free trajectories. Traditional trajectory optimiza-
tion methods which take into account quadrotor dynamics
have been sufficiently explored but often require a robust
initial guess in order to converge to an optimal solution.
Our approach to this problem is utilizing RRT and RRT*
algorithms as path planners for a quadrotor given a starting
state, goal, and set of obstacles in space. The RRT and
RRT* paths are then used within direct collocation trajectory
optimization to satisfy the goal of collision avoidance while
also adhering to the dynamics of the quadrotor system. The
final trajectory is then stabilized locally utilizing a finite-
horizon linear quadratic regulator to provide feedback control.

II. RELATED WORK

A. RRT and RRT* for Motion Planning

The Rapidly-exploring Random Tree (RRT) algorithm is a
probabilistically complete sample based planning algorithm,
initially presented in 1998 [1]. The optimal variation of
RRT called RRT* was then introduced in 2011 with proven
asymptotic optimality [2]. Gaining optimality in RRT*, how-
ever, comes with a cost of execution time and slower path
convergence rate. Both algorithms are still frequently used for

Fig. 1: Quadrotor navigating a maze environment in Drake.

path planning of mobile robots, including quadrotors, cars, and
AUVs. In particular, RRT* has been used to generate optimal
quadrotor paths through cluttered indoor environments as it
can factor in static and dynamic constraints into the path [3].
However, its applications in real-time complex environments
are limited due to slow convergence times in high dimensional
space.

B. Trajectory Optimization of Quadrotors

There have been several different approaches for trajectory
optimization of quadrotors. Diets and Tedrake utilized Mixed-
Integer Planning to navigate a quadrotor through cluttered en-
vironments [4]. This approach separated the environment into
convex, obstacle-free regions and then assigned polynomial
trajectories within each region. This method found feasible and
optimal trajectories through complex 3D environments. The
primary limitation of this approach is that it is dependent on
the set of convex regions which are generated from a random
seed. This is where a sample-based motion planner such as
RRT could more effectively find key waypoints through non-
convex space without being dependent on the specific regions.

Another approach is using differential flatness in conjunc-
tion with direct collocation [5]. Differential flatness is a clever
method for turning a nonconvex trajectory optimization into



a convex problem using a change of variables. If a trajectory
can be found by using the same output dimensions as the
number of actuators in the system, then one can back-solve
to find the inputs to each actuator. This approach has shown
to produce feasible trajectories with respect to the system
dynamics and input constraints as well as solving in lower
computation time than state-of-the-art. However, this approach
did not use an initial guess due to the computational challenges
of solving for an initial guess for each specific environment.
Their methods are also limited as increasing the number of
obstacles reduces the efficiency of the algorithm. Sampling
based path solvers in conjunction with their methods would
resolve these limitations.

Finally, there has been some recent work combining sample
based motion paths as the initial guess for direct trajectory
optimization methods. [6] found feasible trajectories through
using RRT* and further smoothing the path by B-spline for
a quadrotor. They then solved for the required dynamics to
carry out the proposed trajectory. [7] continued this work to
incorporate the RRT path with kinodynamic motion planning.
They utilized Kinodynamic-RRT, resulting in explicit evalua-
tion of the forward dynamics. However, there was no sense
of optimality in this approach. Zhang et. al utilized RRT as
the initial guess to find the optimal trajectory using nonlinear
optimization methods and sequence quadratic programming
for unmanned helicopters [8].

III. METHODS

In order to carry out this optimization problem, we broke
the project into several sub components. RRT and RRT*
algorithms were developed in 2D and 3D based on preliminary
obstacle fields while the direct collocation on the quadrotor
was developed separately, using simple initial guesses for the
trajectories. The RRT and RRT* outputs were then converted
to evenly-spaced vectors mapping a changing position in time
to act as an initial guess for the trajectory optimization. The
resulting state and input trajectories were then stabilized using
a finite-horizon linear quadratic regulator.

A. Simulation Environment

We chose to simulate our system in Drake, which uses
Meshcat as a visualizer. We built our trajectory optimization
and finite-horizon LQR controller using the quadrotor plant,
direct collocation object, and finite-horizon LQR object within
Drake. We used multibody plants to visualize both obstacles
and the quadrotor in simulation to display the collision avoid-
ance capabilities of our method.

B. Quadrotor and Object Models

Success in navigating cluttered fields required an
understanding of the quadrotor plant used within Drake
as well as proper modeling of obstacles to develop good
collision avoidance constraints. The quadrotor state, dynamics,
and object representations are as follows:

Fig. 2: RRT* Path from start (green) to goal (blue) over
spherical obstacles.

State Coordinates:

q = [x, y, z, ϕ, θ, ψ]T

ϕ = roll

θ = pitch

ψ = yaw

Input Thrust Forces:

u = [f1, f2, f3, f4]
T

Dynamics and State Vector:

M(q)q̈ + C(q, q̇)q̇ = τg(q) +Bu

x = [q, q̇]T

ẋ = f(x, u)

Spherical Obstacles:

o = [x, y, z, radius]

Box Obstacles:

o = [x, y, z, width, height, depth]

We chose to represent the quadrotor with cartesian posi-
tion coordinates and three rotational coordinates rather than
using a deferentially flat model as the ability to develop
state constraints within the trajectory optimization could allow
us to avoid dangerous positions for the quadrotor without
a differentially flat model. Additionally, the input vector is
represented by four forces corresponding to the the output
thrust force from each rotor on the quadrotor. The dynamics
are thus represented, as an affine system, by ẋ = f(x, u). The
objects we used are characterized by their center point and
other defining characteristics.



Fig. 3: RRT (blue) and RRT* (black) from start to goal around
rectangular obstacles.

C. RRT* Path Finding

Optimal Rapidly-exploring Random Tree (RRT*) is a proba-
bilistically complete sample based planning algorithm. RRT*
is also asymptotically optimal and returns the shortest path
to the goal. The pseudo-code for the implementation is as
follows:

def RRT*:
for itr in range(0... max_iters)

rndNode = random_node()

nearestNode = neaarest_node(rndNode
cost = distance(nearestNode, rndNode)
newNode = connect(rndNode, nearestNode)

If in_collision(newNode, nearestNode):
continue

neighbors = get_neighbors(newNode)
#improve the costs to each node using

newNode
rewire(newNode, neighbors)

return path(bestGoalNodeIndex)

This approach was utilized for navigating both obstacle
types. The sole difference was the collision checker. The
collision checker verifies that the connection between the
new node and its nearest node does not intersect an obstacle
in the obstacle list.

1) RRT Collision for Spherical Obstacles:

The approach for spherical obstacles was to find the
parametric line connecting the two nodes and find the closest
point on that line to the obstacle center. Then, check if the
distance between the closest point and the obstacle center is
less than the radius. The code is documented in the Appendix.

2) RRT Collision for Rectangular Obstacles:

The collision checker for rectangular objects was a greater
challenge as it required checking if the vector between the
two nodes intersected the box on any face or edge. The
implementation is in the Appendix.

D. Direct Collocation Optimization

The direct collocation algorithm finds a time step, state
trajectory and input trajectory such that the cost function is
minimized and all constraints below are satisfied.

min
x[·],u[·],hn

lf (x[N ]) +

N−1∑
n0

hnl(u[n])

l(u[n]) = Ru[n]2, R = 10

subject to

hn = constant

ẋ(tc,n) = f(x(tc,n), u(tc,n))

x[0] = xi

x[N ] = xf

−π < ϕ < π

−π
2
< θ <

π

2
−π < ψ < π

We constrain the optimization to work on equal time steps,
solving for the dynamics at each collocation point. Addition-
ally, we constrain the roll, pitch, and the yaw of the quadrotor
to avoid gimbal-lock and positions that cause infeasibility in
the program. Although the initial guess from RRT and RRT*
successfully avoids obstacles, there are also two additional
constraints for obstacle avoidance dependent on whether the
specific obstacle in question is a sphere or box. Spherical
obstacle avoidance works as follows:

∀n ∈ [0, N − 1],∀o ∈ O,√
(x[n]x − ox)2 + (x[n]y − oy)2 + (x[n]z − oz)2) > or

Rectangular obstacles were first represented by ellipsoids
according to the following parameter functions, causing elon-
gation in the z-direction to ensure a tighter fit to the x and y
dimensions, shown in Figure 3.

ellipsoid = [ox, oy, oz, a, b, c],

a =
owidth

2
+ 0.1

√
owidth

2
,

b =
oheight

2
+ 0.1

√
oheight

2
,

c =
odepth

2
max (owidth, oheight)



Fig. 4: Ellipsoid collision regions used to approximate the
rectangular obstacles.

Ellipsoid avoidance is as follows:

∀n ∈ [0, N − 1],∀o ∈ O,

(x[n]x − ox)
2

a2
+

(x[n]y − oy)
2

b2
+

(x[n]z − oz)
2

c2
≥ 3

E. Trajectory Stabilization and Simulation

IV. EVALUATION AND RESULTS

We tested our RRT* path finding and trajectory optimization
on three different environments: one with spherical obstacles
and two with box obstacles. The program’s performance was
thus determined by the optimality of both the RRT* solution
and the trajectory optimization program. Performance was
further determined by the result of the finite-horizon LQR
stabilization and whether or not the same end goal was reached
with a random perturbation about the start state.

A. Spherical Obstacles

First, we tested the RRT algorithm and trajectory optimiza-
tion with spherical obstacles in space. Here, we attempted
to drive the quadrotor over a collection of spheres to land
in between obstacles. Figure 5a displays the quadrotor’s path
which closely follows the RRT* guess. The trajectory shown
highlights the capability of the trajectory optimization program
to smooth out the RRT initial guess with the quadrotor

(a) RRT* guess (orange) and resulting xy state trajectory (blue).

(b) Resulting input trajectories for the four rotors.

Fig. 5: Trajectory outputs for the spherical obstacle environ-
ment.

dynamics. Additionally, the input trajectories are shown in
Figure 5b. Here, the inputs are relatively smooth and, though
we did not include input constraints in the direct collocation,
the rotors all operated on below a thrust output of 5 newtons.
This environment was successfully navigated by the program
as RRT* found an optimal path and the direct collocation
algorithm was able to find optimal input and state trajectories.

The state and input trajectories were then simulated in Drake
and stabilized by finite-horizon LQR, yielding three trajecto-
ries starting from a random perturbation around the desired
starting point used in the RRT algorithm. The trajectories
are illustrated in Figure 6 and display the LQR stabilization
effectively guiding the quadrotor along the proposed state
trajectory. Despite the random perturbations introduced in the
simulation, the system still converged to the same goal.

B. U-Shaped Barrier

The next environment we chose to test was a u-shaped
barrier with a proposed path that would force the quadrotor
to bank and move from outside to within the barrier. Similar
to the first trial with spherical obstacles, there was an optimal
path found with RRT* and optimal trajectories returned by the
direct collocation optimization, both of which are displayed



Fig. 6: Nominal trajectory and three random perturbations
about the start state for the spherical environment.

in the xy plane in Figure 7a. The input trajectory, shown in
Figure 7b, is well-bounded without input limits although it
displays some possible numerical artifacts at the end of the
trajectory as each thruster has a larger increase or decrease in
output force.

This environment and maneuver was then simulated with
the LQR stabilization and successfully converged to the set
goal state from three random perturbations, indicating a well-
defined feedback controller through simulation and good initial
trajectories. The results are shown in Figure 8. Some trajecto-
ries simulated with the LQR regulator fly much closer to the
corners of the boxes in comparison to the original trajectory.
Due to our formation of obstacles in each environment, we do
not account for the possibility of collisions with the quadrotor
and simulate those dynamics. Rather, the obstacles are fed as
data to the RRT* algorithm and trajectory optimization and
the subsequent trajectories are a result of avoiding quadrotor
states within the space inhabited by obstacles. Consequently,
as tighter manuevers are simulated with some randomness in
Drake, there is a possibility that the quadrotor would collide
with obstacles given enough randomness.

C. Maze

The last environment we tested was a miniature maze made
up of two 90-degree turns for the quadrotor to navigate,
resulting in a more complex path required to avoid the walls. In
similar fashion to the two previous tests, the RRT* algorithm
and trajectory optimization both found optimal paths given our
constraints, the results of which are shown in the xy plane in
Figure 9a. The quadrotor performs two banks to complete the
90 degree turns and accelerate to the end of the maze. The
trajectory seems to follow the end of the initial RRT* path
more closely than the beginning, indicating how our RRT*
algorithm lacks dynamical understanding and the trajectory
has to find a different path close to the RRT* guess in order
to satisfy quadrotor dynamics throughout the entirety of the
optimization. Additionally, Figure 9b displays the thrust forces

(a) RRT* guess (orange) and resulting state trajectory (blue).

(b) Resulting input trajectories.

Fig. 7: Trajectory outputs for the u-shaped barrier environ-
ment.

Fig. 8: Nominal trajectory and three random perturbations
about the start state for the u-shaped barrier environment.



(a) RRT* guess (orange) and resulting state trajectory (blue).

(b) Resulting input trajectories.

Fig. 9: Trajectory outputs for the maze environment.

yielded by the trajectory optimization over time. In comparison
to the spherical obstacles and u-shaped barrier, these input
trajectories are much more discontinuous and jagged despite
characterizing a relatively smooth trajectory.

The trajectories found in the maze environment were simu-
lated with the LQR regulator and again successfully converged
to the correct end point dictated by the problem definition and
desired trajectory. The three random perturbations about the
start point can be seen in Figure 10. Here, the issue proposed
by the u-shaped barrier persists. Lack of collision dynamics
could result in the random perturbations about the start state
forcing the quadrotor into positions that are impossible given
the obstacles we have set in the problem. In addition to these
impossible initial states, the path the quadrotor takes to reach
the desired trajectory could collide with the walls, highlighting
the limitations of our current implementation.

V. DISCUSSION

Our methods prove that using optimal RRT paths as well-
informed initial guesses to a direct collocation for a quadro-
tor yield not just feasible, but optimal trajectories given
simple obstacle fields. For each environment, RRT* paths
produced optimal input and state trajectories which were
then successfully stabilized by finite-horizon LQR feedback

Fig. 10: Nominal trajectory (blue) and three random perturba-
tions about the start state for the maze environment.

control in simulation. Additionally, the introduction of random
perturbations to the initial state displayed the ability of the
simulated regulator to guide the quadrotor back to the desired
trajectory and complete the desired maneuver. While the
current implementation successfully avoids obstacles within
the RRT* algorithm and direct collocation optimization, the
methods here are limited in scope as they lack a formulation
of collision avoidance within the LQR stabilization.

A secondary limitation is the rectangular obstacle collision
constraints. The ellipsoid approximation worked well for the
environments we selected by over constraining the boxes
vertically as shown in Figure 4 to leave accurate approximate
obstacle regions in the quadrotor air space. However, in order
to expand to more complex environments, such as with holes
through the obstacles, we will need to modify this pipeline
to more accurately approximate the obstacles. Finally, the
main bottleneck of our system is the computation time vs. the
number of obstacles when conducting trajectory optimization.
This is because we add a collision constraint to all knot points
for every obstacle in the space, regardless of it’s distance.
Ideally, we would want to modify this to only check collision
constraints within a reasonable spherical region in order to
improve the efficiency.

VI. CONCLUSION AND FUTURE WORK

The goal of this project was to create an end-to-end
system for finding an optimal quadrotor trajectory through
a cluttered environment. Our final implementation achieved
this goal and was validated in several different environments,
including navigating into a non-convex obstacle space and
through a maze with 90-degree turns. The system was able
to successfully navigate the specified environments and was
robust to perturbations from the initial starting state.

In the future we would like to approve upon our limitations
as specified above, by adding collision checking to the LQR
stability and better representing rectangular obstacles. We also



would like to investigate the performance of other trajectory
optimization pipelines, such as Model Predictive Control,
using the initial RRT* guess. Finally, we would like to conduct
further analysis along the entire trajectory to find regions of
stability using Lyapunov analysis.

VII. TEAM CONTRIBUTIONS

Portia predominantly worked on developing the path finding
algorithms. This included implementing the RRT and RRT*
algorithms in 2D and 3D and developing spherical obstacle
models and cluttered fields for the path finding algorithms to
work through. She also worked to develop visualizations of
the obstacle fields within drake to work with our visualization
of the quadrotor.

Christian mainly worked on implementing the direct col-
location optimization for the quadrotor, implementing state
constraints to avoid dangerous positions for the quadrotor and
collision constraints to avoid spherical obstacles. He used the
results of the path finding algorithms to provide better initial
guesses to the optimization and subsequently simulated the
quadrotor in drake, using finite horizon LQR to stabilize the
quadrotor along the proposed trajectory.
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VIII. APPENDIX

A. Collision Checker for Spherical Obstacles

def sphere_in_collision(p1, p2,
obstacle_list):
for o in obstacle_list:

d12 # vector from p1 to p2
d1c = o_center - p1 # vector from

circle to p1
t = d12.dot(d1c) / (d12.dot(d12) + 1e-7)
t = max(0, min(t, 1)) # 0<=t<=1
d = p1 + d12*t # point where line

segment and o are closest
if sum((o_center-d)**2) < radius**2

return True # is in collision
return False # is not in collision

B. Collision Checker for Rectangular Obstacles

def check_in_box(fDst1, fDst2, P1, P2, B1,
B2, Axis):

’’’
Checks if line intersects box face or edge
’’’

if ( (fDst1 * fDst2) >= 0.0):
return False

if ( fDst1 == fDst2):
return False

p = P1 + (P2-P1) * ( -fDst1/(fDst2-fDst1)
) #get intersection point

if ( Axis==1 and p[2] >= B1[2] and p[2] <=
B2[2] and p[1] >= B1[1] and p[1] <=
B2[1]):
return True

if ( Axis==2 and p[2] >= B1[2] and p[2] <=
B2[2] and p[0] >= B1[0] and p[0] <=
B2[0]):
return True

if ( Axis==3 and p[0] >= B1[0] and p[0] <=
B2[0] and p[1] > B1[1] and p[1] <=
B2[1]):
return True

return False

def check_line_box_collision(B1, B2, L1, L2):
’’’
B1: min x,y,z of box
B2: max x,y,z of box
L1 and L2: end vertices of the line
Main collision checker method. Returns true if
’’’

# check if both points are outside the box
on the same side

if (L2[0] < B1[0] and L1[0] < B1[0]):
return False

if (L2[0] > B2[0] and L1[0] > B2[0]):
return False

if (L2[1] < B1[1] and L1[1] < B1[1]):
return False

if (L2[1] > B2[1] and L1[1] > B2[1]):
return False

if (L2[2] < B1[2] and L1[2] < B1[2]):

return False
if (L2[2] > B2[2] and L1[2] > B2[2]):

return False

# Check if completely within
if (L1[0] >= B1[0] and L1[0] <= B2[0] and

L1[1] >= B1[1] and L1[1] <= B2[1] and
L1[2] >= B1[2] and L1[2] <= B2[2]):
return True

if check_in_box(L1[0]-B1[0], L2[0]-B1[0],
L1, L2, B1, B2, 1) or \

check_in_box(L1[1]-B1[1], L2[1]-B1[1], L1,
L2, B1, B2, 2) or \

check_in_box(L1[2]-B1[2], L2[2]-B1[2], L1,
L2, B1, B2, 3) or \

check_in_box(L1[0]-B2[0], L2[0]-B2[0], L1,
L2, B1, B2, 1) or \

check_in_box(L1[1]-B2[1], L2[1]-B2[1], L1,
L2, B1, B2, 2) or \

check_in_box(L1[[0]]-B2[2], L2[2]-B2[2],
L1, L2, B1, B2, 3):
return True

return False


